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Further modifications of the leads (CR)-(+)-hyoscyamine and (p-chlorophenyl)propionic acid 
a-tropanyl ester), which show analgesic and nootropic activities as a consequence of increased 
central presynaptic ACh release, are reported. 2-Phenoxy- and 2-(phenylthio)alkanoic acid esters 
showed the best results. Several members of these classes possess analgesic properties which are 
comparable to that of morphine and at the same time are able to reverse dicyclomine-induced 
amnesia. Confirmation was found that the mechanism of action is due to an increase in ACh 
release at central muscarinic synapses and that both auto- and heteroreceptors controlling ACh 
release are very likely involved. According to the results obtained with (i?)-(+)-hyoscyamine, 
analgesic activity is stereochemistry dependent, since the fl-(+)-enantiomers are always more 
efficacious than the corresponding S-(-)-ones. On the basis of their potency and acute toxicity, 
compounds (±)-28 (SM2i) and (±)-42 (SM32) were selected for further study. 

Introduction 

In the previous paper,1 we described the synthesis and 
pharmacological evaluation of a series of tropic and 
2-phenylpropionic acid esters endowed with nootropic and 
analgesic activity. These compounds appear to act by 
facilitating central cholinergic transmission through pre­
synaptic auto- or heteroreceptor blockade. 

The rationale for their design and for their use in 
analgesia and cognitive disorders characterized by im­
paired cholinergic transmission has been already discussed 
in detail.1 

In this part of the work, we describe further modulation 
of the leads (atropine and the a-tropanol ester of 2-phen­
ylpropionic acid) that led to the discovery of a new class 
of compounds whose structure is reported in Chart 1. These 
act with the same mechanism and possess high nootropic 
and analgesic activity. 

Since, as reported in the previous paper, analgesic and 
nootropic activity depend on the same mechanism of 
action, we followed molecular manipulation of the leads 
through the simple and relatively inexpensive hot-plate 
test for analgesia, checking in each case that this effect 
could be reversed by suitable doses of atropine and the 
ACh depletor hemicolinium-3 (HC-3), in order to be sure 
that analgesia was in fact due to a cholinergic mechanism. 
Under these conditions, we were able to select the most 
interesting compounds, which indeed on further testing 
showed parallel, in vitro potentiation of cholinergic activity 
and nootropic activity in vivo. 

As compounds with general structure A (Chart 1) are 
chiral and as in the leads the analgesic activity of the 
enantiomers was quite different,2 we also synthesized and 
tested the pure enantiomers of the most potent of our 
compounds. 
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Chart 1 

R,= H, CH,, C2HS, CH(CH3)2. C6HS, CH2-C6H5 

vx* 
O, S. NH. NCHj. CO 

Sec Table 1 

Chemistry 

The synthetic pathways used to obtain the compounds 
studied (Tables 1-4) are reported in Schemes 1-3. Most 
of the acids used as starting material were known.*"18 Those 
obtained for the first time are reported in Table 6. The 
amino alcohols were either commercially available or 
synthesized according to the literature.19-23 The methods 
used in the synthesis and described in Schemes 1-3 are 
standard and do not require further comment. 

Chiral compounds (Table 5) were obtained starting from 
the corresponding chiral acids and using an esterification 
procedure that occurs without racemization, provided the 
hydrochloride of the amino alcohol is used. Use of the 
free bases in fact always resulted in partial or total 
racemization. 

The chiral acids used are known, and their optical purity 
has been reported to be higher than 98%.24-26 However, 
the enantiomers of 2-(phenylthio)butyric acid ((±)-72) 
have not yet been described, and we attempted resolution 
of the racemate through the classic diastereomeric salt 
formation. Unfortunately, to date, only a partial resolution 
has been achieved, and the two enantiomers ((-)- and (+)-
72) show an ee of about 40% (evaluated through gas 
chromatography after chiral derivatization and chiral 
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Scheme 1° 
o 

OH »- R ! ^ X N r / M ^ O H - R ^ V -OY 

• (a) NaOH, Ra-OH (or R2-SH); (b) SOCl2; (c) Y-OH. Ri and R2 
are as reported in Tables 1-3. 

Scheme 2° 
0 

Br yk. i . "yW 

'(a)SOCl2; (b) a-tropanol; (c) | / J R2 = H, CH3. R4 = H, 

R4 

CI. 

Scheme 3° 

" (a) NaBH4, BF3-0(C2H6)2. Rt = CH3> C2H6. X = O, S. 

HPLC, see the Experimental Section). As a consequence, 
compounds (+)- and (-)-42 have a similarly low optical 
purity. 

Results 

The introduction of a phenoxyacyl group was at tempted 
in the search for an alternative way of modifying the 
atropine acyl moiety other than elimination of the 
troublesome hydroxy group.1 In this way, an oxygen atom 
and its two lone pairs tha t might have a role in binding 
to the receptor were conserved inside the molecule but in 
an arrangement tha t would not compromise its stability. 

While the a-tropanol esters of phenoxyacetic and 
2-phenoxypropionic acids were inactive (1 and 2), the 
corresponding ester with 2-(4-chlorophenoxy)propionic 
acid ((±)-4) was a potent analgesic with an efficacy which 
was comparable to tha t of morphine. 

This unexpected, somehow contradictory, result gave 
us a new lead tha t was extensively manipulated toward 
optimization; the results obtained can be summarized as 
follows. 

1. In this new series of compounds, only esters with 
a-tropanol maintained activity. Some activity was shown 
by JV-ethyl-a-nortropanol esters 6 and 29, although with 
a reduced efficacy. Esterification with the isomeric 
/3-tropanol 12 gave a definitely less active compound. Other 
amino alcohols resulted in inactive compounds. 

2. p-Halogen substitution was very effective in giving 
compounds with high efficacy (3, (±)-4,15). The 2-chloro 
isomer 13 was inactive, while the 3-chloro derivative 14 
was less potent and efficacious than the 4-chloro analogue 
(±)-4. All other substituents tested were detrimental for 
activity, to differing extents. 

3. Homologation of the propionic acid moiety was 
beneficial, and indeed, the butyric acid derivative (±)-28 
was one of the most potent and efficacious compounds 
obtained. Higher homologues (33-35) were inactive. 
Compound 36, designed to stress the similarity with 
atropine, was only feebly active. Double substitution of 
the a-carbon of alkanoic acid 65 was detrimental for 
efficacy. 

4. Isosteric substitution of oxygen with sulfur was 
accepted by the molecule, and compound (±)-42 was the 
most efficacious and potent of the compounds studied. 
Activity was abolished when sulfur was oxidized to the 
corresponding sulfoxide 45. 

Substitution with N H or NCH 3 still gave efficacious 
compounds (i.e., 48); instead, substitution of oxygen with 
a carbonyl (58) or methylene group (see previous paper) 
resulted in poorly efficacious or inactive compounds. 

5. Shifting the phenoxy group in ff to the acyl moiety 
resulted in a compound (59) of reduced efficacy. 

6. Reduction of the ester to an ether function gave 
negative results, leading to inactive compounds (i.e., 62) 
or to compounds with reduced potency and efficacy (i.e., 
61). Substitution of the ester with an amide (60) also 
reduced potency and efficacy. This is in agreement with 
the results obtained with tropic acid esters, where the 
amide group proved unable to maintain analgesic activity.2 

In this respect, it is interesting tha t compound 78, the 
(4-chlorophenoxy)butyric acid analogue of tropicamide, 
was completely devoid of analgesic activity, in contrast to 
the high analgesic potency of tropicamide itself.1 

CH CH 

Tropicamide 

7. Substituting the phenyl with a naphthalene ring gave 
poor results, as only /3-naphthoxy derivatives showed some 
degree of activity. 

8. The compounds studied showed enantioselectivity 
in their antinociceptive action, confirming the findings in 
the tropic acid and 2-phenylpropionic acid series.1 

As regards (+)-42, because of the low optical purity of 
the compound, absolute configuration was not firmly 
established but is very likely the same as the other 
corresponding compounds in Table 5 (R). In fact, (+)-42 
was the more potent of the two enantiomers. 

While there are only minor differences among the EDso's 
of the enantiomers, a clear-cut difference was unexpectedly 
observed in their efficacies, the i?-(+)-isomers being much 
more efficacious then their S-(-)-counterparts. The 
analgesic potency and efficacy of the compounds defined 
as described in the Experimental Section are reported in 
Tables 1-5. 

Discussion 

Like the tropic and 2-phenylalkanoic acid esters de­
scribed in the previous paper,1 this new class of compounds 
seems to act through a facilitation of central ACh release 
by modulating presynaptic receptors. 

The analgesic activity was indeed reversed by suitable 
doses of atropine, as shown in Figure 1 for the most 
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Table 1. 2-Phenoxyalkanoic Acid Esters 
NCH, NH -NC,H, NCH.Ph ^ \ v ^ 

o *• FG F6 F% • f% QJ 

J# 
NCHj 

analgesic activity" 

no. 

1 
2 
(±)-3 
(±)-4« 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
(±)-28 
29 
30 
31 
32 
33 
34 
35 
36 

Ri 

H 
CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

CH3 

C2H5 
C2H5 
C2H5 
C2H6 
C2H5 
C2H5 
C2H5 
CH(CH3)2 

C6H5 
CHj-CeHj 
CH2OCOCH3 

R2 

H 
H 
4-F 
4-Cl 
4-Cl 
4-Cl 
4-Cl 
4-Cl 
4-Cl 
4-Cl 
4-Cl 
4-Cl 
2-C1 
3-C1 
4-Br 
4-CF3 
4-CN 
4-C(CH3)3 

4-C(CH3)3 

4-SCH3 

4-SOCH3 

3,4-Cl 
3,4-Cl 
3-CH3,4-Cl 
4-C6H5 

H 
4-F 
4-Cl 
4-Cl 
4-Cl 
4-Cl 
4-Cl 
4-Cl 
4-Cl 
4-Cl 
4-Cl 

Y 

A 
A 
A 
A 
B 
C 
D 
E 
F 
G 
I 
L 
A 
A 
A 
A 
A 
A 
E 
A 
A 
A 
E 
A 
A 
A 
A 
A 
C 
F 
H 
I 
A 
A 
A 
A 

salt" (rec solv) 

maleate (A) 
maleate (A) 
maleate (B) 
maleate (A) 
maleate (A) 
maleate (A) 
oxalate (A) 
hydrochloride (B) 
oxalate (A) 

oxalate (A) 
maleate (A) 
oxalate (C) 
oxalate (B) 
oxalate (E) 
oxalate (C) 
maleate (B) 
maleate (B) 
maleate (D) 
maleate (A) 

maleate (A) 
maleate (C) 
oxalate (D) 
maleate (B) 
oxalate (C) 
citrate (B) 
maleate (A) 
oxalate (A) 
oxalate (A) 
oxalate (A) 
oxalate (A) 
maleate (D) 
oxalate (A) 
maleate (D) 

formula6 

C20H25NC-7 
C21H27NO7 
C2iH26FN07 

C21H26CINO7 
C20H24CINO7 
C22HMC1N07 
C26H28CINO7 
Ci6H2iCl2N03 

C17H22CINO7 
C16H22C1N03 

Ci9H24ClN07 

C21H26C1N07 

C19H24CINO7 
C19H24CINO7 
Ci9H24BrN07 

C2oH24F3N07 
C22H26N2U7 
C25H36N07 
C24HS3N07 
C22H29N07S 
C18H26N04S 
C21H25C12N07 
C20H23C12NO7 
C20H26C1NO7 
C27H31NC-7 
C20H27NO7 
C24H32FNOio 
C22H28C1N07 
C21H28C1N07 
C18H24C1N07 
Ci7H24ClN07 

C20H26CINO7 
CasHwCINO, 
C24H26CINO7 
C27H30CINO7 
C19H24CINOS 

mp CC) 

53-55 
89-90 
82-83 
112-114 
132-134 
92-94 
117-119 
88-90 
142-143 

f 
90-92 
90-92 
100-102 
137-140 
100-104 
110-113 
125-126 
171-173 
104-105 
82-84 
/ 
123-126 
102-104 
87-90 
160-162 
97-99 
174-176 
102-103 
150-152 
136-138 
128-129 
78-80 
124-126 
142-145 
127-129 

f 

maximum level 
of analgesia"* 

inact 
inact 
91 
90 
inact 
42 
inact 
inact 
intact 
inact 
inact 
26 
inact 
62 
86 
44 
53 
inact 
inact 
21 
inact 
50 
inact 
inact 
inact 
35 
94 
99 
45 
inact 
inact 
inact 
inact 
inact 
inact 
25 

EDK, (SE) 
(mg/kg sc) 

33 (3.7) 
32 (2.3) 

42 (3.0) 

21 (1.6) 

26 (1.9) 
31 (2.4) 
26 (2.0) 
31 (2.5) 

43 (3.1) 

22 (1.5) 

31 (1.9) 
37 (2.1) 
20 (1.8) 
32 (2.9) 

23 (1.5) 
0 A = absolute EtOH/Et^O; B = absolute EtOH; C = ethyl acetate; D = ethyl acetate/Et20; E = dioxane. * All compounds were analyzed 

for C, H, and N. The results are within ±0.4% of the theoretical value. IR and NMR spectra are in agreement with the proposed structures. 
c Evaluated on male albino Swiss-Webster mice with hot-plate test; plate temperature 52.5 °C; cutoff time 45 s. d Compared to morphine as 
reference; see text for calculations and statistical evaluation. In this reference system, the value of atropine is 100.e See ref 32.' Oil. 

interesting compounds, (±)-28 and (±)-42. Moreover, 
pretreatment with hemicholinium prevented the analgesic 
action, showing that acetylcholine release is necessary for 
activity (Figure 1). 

As reported in the accompanying paper,1 the involve­
ment of a cholinergic mechanism is also substantiated by 
the effect of the compounds on guinea pig ileum electrically 
and nicotine-evoked responses, as shown for compounds 
(±)-4, (±)-28, (±)-39, and (±)-42 in Figure 2. Accordingly, 
the involvement of opioidergic, serotoninergic, and 
GABAergic systems has been ruled out.1 

Since the analgesic profile of the compounds of the 
present series is practically identical in terms of potency 
and efficacy to that of the 2-phenylpropionic acid deriva­
tives described in the previous paper,1 it is conceivable 
that in this case, too, receptor systems besides the 
muscarinic one could be involved. To date, we have no 
sound data for solving this problem, although some 
indications can be derived from the analgesic activity of 
the enantiomers. 

The different efficacies of the enantiomers in producing 
analgesia can be assumed to be a consequence of their 
different abilities to facilitate ACh release. If this is true, 
the most efficacious enantiomer might act on two (or more) 
receptors controlling ACh release, while the less efficacious 
isomers might act on only one. 

Bearing in mind that (fi)-(+)-hyoscyamine is active, that 
its S-(-)-enantiomer is inactive on analgesia, and that (R)-
(+)-hyoscyamine very probably acts on the muscarinic 
autoreceptor2 (see, also, the previous paper in this issue), 
we could speculate that the i?-(+)-enantiomers of the 
present series act both on the muscarinic autoreceptors 
and on another receptor (5-HT?) controlling ACh release. 
The S-(-)-compounds, on the other hand, being unable to 
block the presynaptic muscarinic receptor, probably only 
act on the second receptor system. 

Careful binding studies of the compounds and of their 
enantiomers on receptors known to control ACh release 
and the evaluation of M2 (presynaptic)/Mi (postsynaptic) 
selectivity should help to answer the question. These 
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Table 2. 2-(Phenylthio)- and 2-(Phenylamino)alkanoic Acid a-Tropanyl Esters 

.X 
• • / ^ ' 

no. 

37 
38 
(±)-39 
40 
41 
(±)-42 
(±)-43 
44 
45 
46 
47 
48 
49 

Ri 

CH3 

CH3 

CH3 

CH3 

CH3 

C2H5 
C2H5 
CH(CH3)2 

CH3 

CH3 
CH3 

CH3 

C2H5 

R2 

H 
4-F 
4-Cl 
4-Br 
4-CH3 

H 
4-Cl 
4-Cl 
H 
H 
4-Cl 
4-Cl 
4-Cl 

X 

s 
s 
s 
s 
s 
s 
s 
s 
so NH 
NH 
NCH3 

NCH3 

salt" (rec solv) 

maleate (B) 
oxalate (B) 
maleate (B) 
oxalate (B) 
maleate (B) 
oxalate (A) 
oxalate (A) 
maleate (D) 
maleate (B) 
hydrochloride (B) 
oxalate (A) 
maleate (B) 
maleate (B) 

formula1" 

C21H27NO6S 
C19H24FNO6S 
C2iH26ClN06S 
Ci9H24BrN06S 
C22H29N06S 
C20H27NO6S 
C20H26CINO6S 
C23H3C.C1N06S 
C21H27NO7S 
C17H26CIN2O2 
C19H25CIN2O6 
C22H29CIN2O6 
C23H3iClN206 

mp C O 

62-64 
112-115 
120-122 
102-104 
105-106 
143-145 
130-133 
102-104 
145-147 
218-220 
138-140 
118-120 
138-140 

analgesic activity* 

maximum level 
of analgesia'' 

62 
41 
72 
33 
33 
103 
79 
41 
inact 
74 
33 
86 
85 

EDM (SE) 
(mg/kg sc) 

30 (2.6) 
15 (1.3) 
19 (1.4) 
35 (2.6) 
7 (0.7) 
18 (1.6) 
20 (2.1) 
41 (2.8) 

32 (2.5) 
31 (2.1) 
29 (3.0) 
38 (2.7) 

"-"' See corresponding footnotes of Table 1. 

Table 3. 2-(Naphthyloxy)alkanoic Acid a-Tropanyl Esters 

^K^V 
^ V ^ 

V-o^/ 

no. 

50 
51 
52 
53 
54 
55 
56 
57 

Ri 

CH3 

C2H5 
CH3 
C2H5 
CH3 

C2H5 
CH3 

C2H5 

R2 

H 
H 
6-Br 
6-Br 
H 
H 
4-Cl 
4-Cl 

structure 

a 
a 
a 
a 
b 
b 
b 
b 

salt" (rec solv) 

maleate (A) 
maleate (D) 
maleate (A) 
maleate (D) 
maleate (D) 
maleate (D) 
maleate (A) 
maleate (B) 

formula' 

C26H29N07 

C26H31N07 

C25H28BrN07 

C26H3oBrN07 

C25H29NO7 
C26H3iN07 

C25H28CINO7 
C26H8oClN07 

mp (°C) 

115-117 
99-102 

117-120 
117-119 
141-143 
122-124 
152-153 
148-150 

analgesic activity0 

maximum level 
of analgesia11 

86 
inact 
inact 
32 
inact 
inact 
inact 
inact 

ED50 (SE) 
(mg/kg sc) 

34 (1.6) 

42 (2.4) 

a_J See corresponding footnotes of Table 1. 

Table 4. Other a-Tropanyl Esters and Ethers 

XT 
no. 

58e 

59 
60 
61 
62 
63 
64 
65 

Ri 

CH3 

H 
CH3 

CH3 

C2H5 
CH3 

C2H5 

aoT 

R2 

Cl 
H 
Cl 
Cl 
Cl 
Cl 
Cl 

X 

CO 
0-CH2 
0 
0 
0 

s 
s 

Y 

COO 

coo CONH 
CH20 
CH20 
CH20 
CH20 
COO 

salt" (rec solv) 

oxalate (A) 
maleate (A) 
hydrochloride (A) 
oxalate (A) 
tartrate (A) 
tartrate (A) 
tartrate (A) 
oxalate (A) 

formula6 

C20H24CINO7 
C2lH27N07 
C17H24CI2O2N2 
CwHaeClNOe 
C22H32C1N08 

C21H3oClN07S 
C22H32C1N07S 
C20H26CINO7 

mp (°C) 

175-178 
88-89 
70-71 

134-136 
65-68 
83-85 
70-73 

153-155 

analgesic activity" 

maximum level 
of analgesia'' 

30 
28 
33 
64 
inact 
inact 
53 
52 

ED50 (SE) 
(mg/kg sc) 

34 (2.4) 
22 (1.2) 
36 (1.9) 
44 (2.7) 

39(3.0) 
23 (1.8) 

"-<' See corresponding footnotes of Table 1. * The acid used as starting material was obtained according to ref 33. 
studies are already underway. The first results indicate 
that the members of this series bind to the central 
muscarinic receptor with affinities in the micromolar range 
(1.74 X 10-7 M for (±)-28 and 2.27 X 10"8 M for (±)-42 
against [3H]QNB on rat brain), but there is no apparent 
correlation between analgesic activities and binding.27 This 

can be partly explained pharmacokinetically, as discussed 
below, but the involvement of other receptor systems 
cannot be excluded. 

As expected, compounds showing analgesic activity also 
possess nootropic properties. Figure 3 shows the results 
of a passive avoidance test on mice. In this experiment, 
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Table 5. Chemical-Physical Properties and Analgesic Activity of the Enantiomers of 3, 4, 28, 39, 42, and 43 

compd 

<ft)-(+)-3 
<S)-(-)-3 
<ft)-(+)-4 
(S)-(-)-4 
(ft)-<+)-28 
(S)-(-)-28 
(R)-(+)-39 
(S)-(-)-39 
(+)-426 

(-)-42» 
(fi)-(+)-43 
(S)-(-)-43 

[a]wD (absolute 
EtOH) (deg) 

+29.6 
-28.7 
+42.2 
-40.8 
+48.1 
-49.4 
+70.6 
-71.0 
+35.4 
-33.8 
+85.2 
-87.6 

salt" (rec solv) 

citrate (B) 
citrate (B) 
maleate (A) 
maleate (A) 
maleate (B) 
maleate (B) 
maleate (B) 
maleate (B) 
oxalate (A) 
oxalate (A) 
maleate (A) 
maleate (A) 

mp CC) 

155-157 
155-157 
111-114 
112-115 

83-85 
83-85 

112-114 
110-113 
147-148 
144-146 

74-77 
74-77 

analgesic 

maximum level 
of analgesia'' 

106 
65 
68 
37 
89 
56 
61 
34 
86 
53 
64 
38 

activity0 

EDso (SE) 
(mg/kg sc) 

21 (2.0) 
23 (1.9) 
16 (0.7) 
17 (1.3) 
14 (0.8) 
18(1.7) 
14 (1.7) 
16 (0.9) 
16 (1.5) 
13 (2.1) 
11 (0.8) 
14 (0.7) 

**& See the corresponding footnotes of Table 1. 6 The compounds are only partially resolved (scalemic) with an ee = 40 % (see the Experimental 
Section). Accordingly, their absolute stereochemistry is not yet firmly established but is very probably identical to that of the other members 
of the series (/?-(+) and S-(-), respectively). 

p«£. SALINE 

TREATUEST 

'ATROPINE* PlfcsZEptvE 
5 mg/kg i.p. 0.01 ng/i.c v. 

h [ ] Saline s.c. 
~~ a n 
S I | Ct)-2S 30mgAg sc. 

g ^ (-)-42Mmg/kg s.c. 

Figure 1. Effect of atropine, pirenzepine, and hemicholinium-3 
(HC-3) on (±)-28 and (±)-42 antinociception in mouse hot-plate 
test (52.5 °C). Vertical lines give se of the mean. *P < 0.01 in 
comparison with saline controls. Atropine, pirenzepine, and HC-3 
were administered respectively 30 min, 20 min, and 5 h before 
the test. (±)-28 and (±)-42 were injected 15 min before the test. 
Each column represents the mean of at least 10 mice. 

compounds (±)-28 and (±)-42 show reversion of dicyclo-
mine-induced amnesia at doses that are about 10 times 
lower than that required for analgesia with compound (±)-
28 (Figure 3). 

Structure-activity relationships based on analgesic 
activity measured on the hot-plate model obviously reflect 
not only the interaction with the receptor(s) but also the 
pharmacokinetics of each single compound, so that they 
must be regarded with some caution. In fact, only the so 
far unexplored balance of pharmacodynamic and phar­
macokinetic properties can explain the numerous incon­
sistencies in structure-activity relationships which are 
found in the data reported in Tables 1-4. 

Consider, for instance, the inactivity of 2 as compared 
to the high analgesic effects of (±)-3 and (±)-4 and the 
fact that p-chloro substitution, which is critical for phenoxy 
derivatives ((±)-28), does not seem to be a requirement 
for phenylthio derivatives ((±)-42). 

Despite these differences in structure-activity relation­
ships, the compounds studied show an identical enanti-
oselectivity, the most active enantiomer invariably being 
theft-(+)-one(seeTable5). Their absolute configuration 
is identical to that of the most potent enantiomers of the 

M.INF. (±)! l (±)-42 
10" 10" 

ACh <5I0-*M) 

Electrical stimulation 10.1 Hz, 0.5 ms 

Nicotine (4 10'6 Ml 

(±>-4 |±)-» 
lO'12 10 l ! 1 

twice threshold voltage) 

M 

Figure2. Effectof(±)-28,(±)-42,(±)-4,and(±)-39onchemically 
and electrically evoked contractions of guinea pig ileum myenteric 
plexus longitudinal muscle strip. Each column represents the 
mean of at least three experiments, and vertical lines give se of 
the mean. 

a-tropanyl esters of tropic acid ((i?)-(+)-hyoscyamine) and 
2-phenylpropionic acid (S-(+)).' 

We tried to overlap the minimized conformations of the 
eutomers ((ii)-(+)-hyoscyamine, (S)-(+)-a-tropanyl 2-phe-
nylpropionate, (f?)-(+)-28, and (+)-42) and found that an 
acceptable degree of superimposition is indeed possible,28 

suggesting that the compounds probably interact with 
common receptor site(s). However, the real significance 
of such overlapping is highly questionable since, as 
discussed above, different receptor types seem to be 
involved in the production of the pharmacological activity 
of some of the compounds studied. 

Like the compounds studied before,1 this new series of 
compounds does not provoke any symptom of cholinergic 
excitation (salivation, lacrimation, tremors, and hypoth­
ermia) when administered to the animals. This makes 
the compounds quite promising clinical candidates for 
analgesia and treatment of pathological states character­
ized by cholinergic deficit. Compounds (±)-28 (SM21.) and 
(±)-42 (SM32) have been selected for further study on the 
basis of their activity and acute toxicity. 

Exper imenta l Section 

Chemistry. All melting points were taken on a Biichi 
apparatus and are uncorrected. Infrared spectra were recorded 
on a Perkin-Elmer 681 spectrophotometer in a Nujol mull for 
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Table 6. (Aryloxy)- and (Arylthio)alkanoic Acids 

DICYCLOMINE 3 

Figure 3. Effect of (±)-28 and (±)-42 in comparison with 
physostigmine and piracetam on dicyclomine-induced amnesia 
in mouse passive avoidance test. (±)-28, (±)-42, and physos­
tigmine were administered 20 min before training. Piracetam 
was administered 30 min before training. Dicyclomine was 
injected immediately after the training test. Vertical lines give 
se of the mean. In parentheses is the number of mice. *P < 0.01 
in comparison with dicyclomine-treated mice. 

solid and neat for liquids. NMR spectra were measured on a 
Gemini 200 spectrometer. Chromatographic separations were 
performed on a silica gel column by gravity chromatography 
(Kieselgel 40,0.063-0.200 mm, Merck) or flash chromatography 
(Kieselgel 40, 0.040-0.063 mm, Merck). Yields are given after 
purification, unless otherwise stated. Where analyses are 
indicated by symbols, the analytical results are within ±0.4% of 
the theoretical values. Optical activity was measured at a 
concentration of 1 g/100 mL (c = 1) with a Perkin-Elmer 241 
polarimeter with an accuracy of ±0.5°. GC-MS spectra were 
obtained with a Perkin-Elmer ITD connected to a Perkin-Elmer 
8420 capillary gas chromatograph. 

General Method for the Synthes is of 2-Phenoxy- and 
2-(Phony It hio)al kanoic Acids and Like Compounds. A 0.2-
mol portion of NaOH was dissolved in 300 mL of absolute EtOH; 
to this solution were added 0.1 mol of the appropriate phenol or 
thiophenol and 0.1 mol of the appropriate a-bromoalkanoic acid, 
and the mixture was refluxed for 24 h. This procedure works 
nicely for thiophenols and most phenols; for less reactive phenols, 
it may be useful to remove the solvent and dissolve the residue 
in 100 mL of DMF, keeping the solution at 80 °C for 48 h. 

In every case, the solvent was removed at the end of the reaction 
and the residue dissolved in 100 mL of HjO, acidified with 6 N 
HC1, and extracted with ether. The organic layer was extracted 
several times with a saturated solution of Na2C03, and the extracts 
were collected and acidified to give the final product which was 
filtered or extracted with ether if oily. Yields ranged from 60% 
to 95%. Table 6 shows the acids not previously described. 

2-(4-Chlorophenoxy)-3-hydroxypropionic acid (70) was ob­
tained from the corresponding 2-bromo-3-hydroxypropionic acid29 

with a similar procedure. 
General Method for Ester Synthesis. A 0.01-mol portion 

of the appropriate acid was refluxed with 25 mL of SOCl2 for 1 
h. The excess of thionyl chloride was removed at reduced pressure 
and the oily residue dissolved in cyclohexane and evaporated 
again to dryness. This procedure, repeated twice, gave a 
sufficiently pure acid chloride that was used as such in the 
following reaction. 

A 0.01-mol portion of the appropriate amino alcohol was added 
to 0.01 mol of acyl chloride in 25 mL of CH2CI2 and stirred for 
12 h in the presence of an excess of solid anhydrous Na2C03. At 
the end of the reaction, the organic layer was washed with a 
saturated solution of Na2C03 and with H 2 0 and then dried over 
Na2SO«. Evaporation of the solvent gave a residue that was 
transformed into the salts reported in Tables 1-4. 

The amide 60 was obtained in the same way, starting from 
a-tropamine. The ester 36 was obtained in the same way after 
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mp CC) 
(rec solv)" 

73-75 
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c 

136-138 (A) 

50-51 (A) 

i 

d 

182-183 (A) 

135-136 (C) 

158-160 (B) 
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formula6 

OoHoFsOa 

Ci3Hi803 

C,4H„C103 

C16H13C103 

C9H„C104 

C9H9FO2S 

C10H12O2S 

CUH13C102S 

C13H„Br03 

C,4H,3Br03 

CuHuClOa 

CuHuClO, 

• Solvent: A = EtOH/H20, B = ethyl acetate/cyclohexane, and C 
= cyclohexane. * All compounds were analyzed for C, H, and N. The 
results are within ±0.4% of the theoretical value. IR and NMR 
spectra are in agreement with the proposed structures.c The sample 
could not be purified from traces of p-chlorocinnamic acid and was 
used as such. d Oil. 

protection of the hydroxy group with acetyl chloride. The ester 
45 was obtained by oxidation of 37 with H2O2 in glacial acetic 
acid. 

3a-Tropanyl 2-(Phenylamino)propionate (46). A 6.5-g 
(0.042-mol) portion of 2-bromopropionic acid was transformed 
into the chloride by reaction with SOCl2 (6.2 mL, 0.084 mol) at 
50 °C. The acyl chloride was purified by fractional distillation 
(120-125 °C). Acyl chloride (0.68 g, 3.9 mmol) was added to a 
solution of a-tropanol hydrochloride (0.7 g, 3.9 mmol) in 50 mL 
of CHCI3 and the solution kept at 50 °C for 8 h; then, 0.73 g (7.8 
mmol) of aniline in 10 mL of CHCI3 was added and the solution 
refluxed for another 6 h. The resulting mixture was then cooled 
and shaken with a saturated solution of Na2C03 and the organic 
layer washed with H 2 0 and dried. Evaporation of the solvent 
gave 1.2 g of an oil that was transformed into the hydrochloride 
(see Table 2). 

In the same way, using the appropriate aniline and alkanoic 
acid, compounds 47-49 were prepared (see Table 2). 

3a-Tropanyl 2-(4-Chlorophenoxy)propyl Ether (61). A 
0.02-mol portion of (±)-4 (as the free base) was dissolved in 25 
mL of boron trifluoride etherate, and a solution of NaBH« (0.1 
M) in 75 mL of anhydrous T H F was added while cooling to 0 °C. 
The mixture was then left at room temperature for 10 h. The 
excess of hydride was destroyed with acetone and the mixture 
evaporated at reduced pressure. Alkalinization of the residue 
with 10% NaOH and extraction with CHC13 gave an oil that was 
transformed into the oxalate. Compounds 62-64 were obtained 
in the same way (see Table 4). 

General Method for the Synthesis of Chiral a-Tropanyl 
Esters . A 0.01-mol portion of the enantiomer of the acid was 
heated at 60 °C for 3 h in 25 mL of SOCl2 and the reaction 
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product worked up as already described for the racemic chloride. 
The acyl chloride was then dissolved in 20 mL of ethanol-free 
CHCla, a solution of 0.012 mol of a-tropanol hydrochloride in 
100 mL of ethanol-free CHCI3 was added, and the mixture was 
refluxed for 30 h. The solvent was removed under vacuum and 
the residue treated with a 10% solution of NaHCCV The solution 
was extracted with H2O and then dried and evaporated to give 
an oil that was transformed into the salt shown in Table 5. 

Resolution of Racemic 2-(Phenylthio)butyric Acid (72). 
A 3.7-g (0.019-mol) portion of racemic 72 was dissolved in the 
minimum amount of CH3CN, and an equimolar amount of (R)-
(+)-phenylethylamine was added; the salt obtained was recrys-
tallized several times from CH3CN to constant rotation. M D 2 0 

= +23.8° (c = 0.5; absolute EtOH). Mp 85-87 °C. The salt was 
dissolved in the minimum amountof water, the solution acidified 
with 6 N HC1, and the acid extracted with CHC13. Yield 0.83 g. 
t ab 2 0 = +51.6° (c = 0.5; absolute EtOH). The mother liquors 
of previous crystallizations were collected. The acid was recovered 
as described above and then dissolved in CH3CN; an equimolar 
amount of (S)-(-)-phenylethylamine was added. After several 
crystallizations, constant rotation was obtained. M D 2 0 = -22.0° 
(c = 0.5; absolute EtOH). Mp 86-88 °C. The acid was obtained 
as described above; [a]D

20 = -46.8° (c = 0.5; absolute EtOH). 
The enantiomer with [O:]D20 = -46.8° was derivatized with 

(lfl,2S,5fl)-menthol and then gas chromatographed on a Perkin-
Elmer 8420 capillary gas chromatograph equipped with a DB5 
(J&W Scientific, CA), 0.1 ixm. The results showed that the 
resolution was incomplete, the ee being about 40%. The same 
results were obtained with HPLC on chiracel OD-R (DAICEL) 
(eluent: CH3CN/NaC104 (0.1 M)-HC104, pH 3, 70/30; flux 0.5 
mL/min). 

AT-Ethyl-JV-(4-pyridinylmethyl)-2-(4-chlorophenoxy)bu-
tyramide (78). A 0.3-g (1.4-mmol) portion of 2-(4-chlorophe-
noxy) butyric acid was transformed into the acyl chloride by 
reaction with SOCl2 (0.2 mL, 2.8 mmol) at 80 °C for 2 h. The 
excess of thionyl chloride was removed following the procedure 
described for the General Method for Ester Synthesis. 

4-[(Ethylamino)methyl]pyridine (0.4 mg, 2.8 mmol) was added 
to the acyl chloride in 10 mL of ethanol-free CHCI3 and the 
mixture heated to reflux for 14 h. At the end of the reaction, the 
organic layer was washed with a saturated solution of Na2C03 
and with H2O and then dried over Na2S04. Evaporation of the 
solvent gave a residue (0.4 g) that was crystallized from a mixture 
of ethyl acetate-cyclohexane; 0.14 g of 78 was obtained. Mp 
99-100 °C. IR v 1660 cm"1. *H NMR (CDC13) & 8.40-8.55 (m, 
2H), 6.65-6.75 (m, 1H), 6.80-7.05 (m, 3H), 7.10-7.20 (m, 2H), 
4.45-4.90 (m, 3H), 3.20-3.60 (m, 2H), 1.80-2.15 (m, 2H), 0.95-
1.20 (m,6H). MS m/e 332 (M+). Anal. (CigH^CU^Oz) C,H,N. 

Pharmacology. Analgesic Activity. Analgesic activity was 
evaluated using the hot-plate method according to Woolfe.30 The 
plate temperature was fixed at 52.5 ± 0.1 °C. An arbitrary cutoff 
time of 45 s was adopted. The number of mice treated in each 
test varied from 8 to 20. 

The analgesic potency of the compounds is reported as the 
ED50 (Tables 1-5). This potency does not however indicate the 
level of analgesia reached. To evaluate this parameter, the 
analgesic effect of the new products injected at their maximal 
nontoxic dose was compared to that of morphine, taken as the 
reference compound and injected at 8 mg/kg sc, a dose that does 
not alter animal behavior. 

Calculations were performed using the following formula: 
Analgesic efficacy of X expressed as percentage of that of 
morphine-HCl (8 mg/kg sc) = (maximum reaction time of X -
pretest reaction of X)/(maximum reaction time of morphine -
pretest reaction time of morphine) X 100. 

The maximal nontoxic dose is the highest dose of X which 
does not cause any visible change in animal behavior, i.e., such 
that the researchers who were unaware of the treatment received 
by the animals were unable to distinguish between treated and 
nontreated mice. 

Standard errors on the values expressed as percentage were 
not evaluated. Original data, however, have been statistically 
processed by employing Dunnett's two-tailed test in order to 
verify the significance of the differences between the means shown 
by treated mice at the maximum reaction time and the pretest 
reaction time. Differences were considered statistically signifi­

cative when P < 0.05. Percent values were calculated only for 
those differences that resulted statistically significative; in the 
other cases, drugs were considered inactive. Since the reaction 
times were measured with an accuracy of ±15%, the errors on 
the percent values calculated through the formula reported above 
should be in the same range. 

Nootropic Activity. Nootropic activity was evaluated in mice 
using the passive avoidance test according to the method 
described by Jarvik and Kopp.31 The above orginal method was 
slightly modified by using a painless punishment (fall into cold 
water, 10 °C) instead of the electrical foot-shock punishment. 

This modification was introduced to avoid false results arising 
from the analgesic properties of the tested compounds. The Mi 
antagonist dicyclomine (2 mg/kg ip injected immediately after 
the training session) was used in order to induce amnesia for 
evaluating the potential protective activity of the test compounds. 
These were injected intraperitoneally 20 min before the training 
session. 

Results are expressed as differences in the times of entry into 
the dark compartment between the first and second sessions. 
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